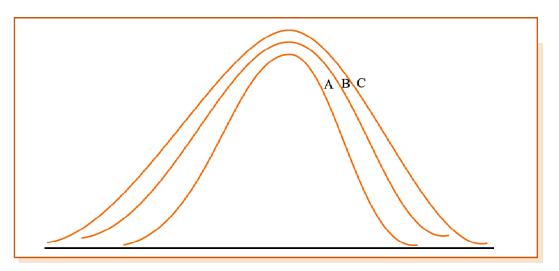

UNIT II: DISPERSION

LEARNING OBJECTIVES


After reading this chapter, students will be able to understand:

- To understand different measures of Dispersion i.e Range, Quartile Deviation, Mean Deviation and Standard Deviation and computational techniques of these measures.
- To learn comparative advantages and disadvantages of these measures and therefore, which measures to use in which circumstance.
- To understand a set of observation, it is equally important to have knowledge of dispersion which indicates the volatility. In advanced stage of chartered accountancy course, volatility measures will be useful in understanding risk involved in financial decision making.

(14.2.1 DEFINITION OF DISPERSION

The second important characteristic of a distribution is given by dispersion. Two distributions may be identical in respect of its first important characteristic i.e. central tendency and yet they may differ on account of scatterness. The following figure shows a number of distributions having identical measure of central tendency and yet varying measure of scatterness. Obviously, distribution is having the maximum amount of dispersion.

Figure 14.2.1

Showing distributions with identical measure of central tendency and varying amount of dispersion.

Dispersion for a given set of observations may be defined as the amount of deviation of the observations, usually, from an appropriate measure of central tendency. Measures of dispersion may be broadly classified into

1. Absolute measures of dispersion.

2. Relative measures of dispersion.

(ii) Mean Deviation

(iv) Quartile Deviation

Absolute measures of dispersion are classified into

- (i) Range
- (iii) Standard Deviation

Likewise, we have the following relative measures of dispersion :

(i) Coefficient of Range.

(ii) Coefficient of Mean Deviation

(iii) Coefficient of Variation

(iv) Coefficient of Quartile Deviation.

We may note the following points of distinction between the absolute and relative measures of dispersion :

- I Absolute measures are dependent on the unit of the variable under consideration whereas the relative measures of dispersion are unit free.
- II For comparing two or more distributions, relative measures and not absolute measures of dispersion are considered.
- III Compared to absolute measures of dispersion, relative measures of dispersion are difficult to compute and comprehend.

Characteristics for an ideal measure of dispersion

As discussed in section 14.2.1 an ideal measure of dispersion should be properly defined, easy to comprehend, simple to compute, based on all the observations, unaffected by sampling fluctuations and amenable to some desirable mathematical treatment.

(**14.2.2 RANGE**

For a given set of observations, range may be defined as the difference between the largest and smallest of observations. Thus if L and S denote the largest and smallest observations respectively then we have

Range = L - S

The corresponding relative measure of dispersion, known as coefficient of range, is given by

Coefficient of range =
$$\frac{L-S}{L+S} \times 100$$

For a grouped frequency distribution, range is defined as the difference between the two extreme class boundaries. The corresponding relative measure of dispersion is given by the ratio of the difference between the two extreme class boundaries to the total of these class boundaries, expressed as a percentage.

We may note the following important result in connection with range:

Result:

Range remains unaffected due to a change of origin but affected in the same ratio due to a change in scale i.e., if for any two constants a and b, two variables x and y are related by y = a + bx,

Then the range of y is given by

Example 14.2.1: Following are the wages of 8 workers expressed in Rupees. 82, 96, 52, 75, 70, 65, 50, 70. Find the range and also its coefficient.

Solution: The largest and the smallest wages are L = ₹ 96 and S = ₹ 50Thus range = ₹ 96 - ₹ 50 = ₹ 46

Coefficient of range = $\frac{96-50}{96+50} \times 100$ = 31.51

Example 14.2.2: What is the range and its coefficient for the following distribution of weights?

Weights in kgs. :	50 - 54	55 – 59	60 – 64	65 – 69	70 - 74
No. of Students :	12	18	23	10	3

Solution: The lowest class boundary is 49.50 kgs. and the highest class boundary is 74.50 kgs. Thus we have

Range = 74.50 kgs. – 49.50 kgs. = 25 kgs.

Also, coefficient of range = $\frac{74.50 - 49.50}{74.50 + 49.50} \times 100$ = $\frac{25}{124} \times 100$ = 20.16

Example 14.2.3 : If the relationship between x and y is given by 2x+3y=10 and the range of x is ₹ 15, what would be the range of y?

Solution: Since 2x+3y=10Therefore, $y = \frac{10}{3} - \frac{2}{3}x$

Applying (14.2.1), the range of y is given by

$$R_{y} = |b| \times R_{x}$$
$$= 2/3 \times \overline{\mathbf{T}} 15$$
$$= \overline{\mathbf{T}} 10.$$

(14.2.3 MEAN DEVIATION

Since range is based on only two observations, it is not regarded as an ideal measure of dispersion. A better measure of dispersion is provided by mean deviation which, unlike range, is based on all the observations. For a given set of observation, mean deviation is defined as the arithmetic mean of the absolute deviations of the observations from an appropriate measure of central tendency. Hence if a variable x assumes n values $x_1, x_2, x_3...x_n$, then the mean deviation of x about an average A is given by

 $MD_{A} = \frac{1}{n} \sum |x_{i} - A|.$ (14.2.2)

For a grouped frequency distribution, mean deviation about A is given by

$$\mathbf{MD}_{\mathbf{A}} = \frac{1}{n} \sum |\mathbf{x}_{i} - \mathbf{A}| \mathbf{f}_{i} \qquad (14.2.2)$$

Where x_i and f_i denote the mid value and frequency of the i-th class interval and

$$N = \sum f_i$$

In most cases we take A as mean or median and accordingly, we get mean deviation about mean or mean deviation about median.

A relative measure of dispersion applying mean deviation is given by

Coefficient of mean deviation =
$$\frac{\text{Mean deviation about A}}{A} \times 100$$
(14.2.3)

Mean deviation takes its minimum value when the deviations are taken from the median. Also mean deviation remains unchanged due to a change of origin but changes in the same ratio due to a change in scale i.e. if y = a + bx, a and b being constants,

Example 14.2.4: What is the mean deviation about mean for the following numbers?

5, 8, 10, 10, 12, 9.

Solution:

The mean is given by

X =	$=\frac{5+8+10+10+12+9}{6}$	= 9
	Table	1 4.2. 1

14010 11.2.1					
Computation o	Computation of MD about AM				
X _i	$ \mathbf{x}_{i} - \overline{\mathbf{x}} $ 4				
5	4				
8	1				
10	1				
10	1				
12	3				
9	0				
Total	10				

Thus mean deviation about mean is given by

$$\frac{\sum \left| \mathbf{x}_{i} - \overline{\mathbf{x}} \right|}{n} = \frac{10}{6} = 1.67$$

Example. 14.2.5: Find mean deviations about median and also the corresponding coefficient for the following profits ('000 ₹) of a firm during a week.

82, 56, 75, 70, 52, 80, 68.

Solution:

The profits in thousand rupees is denoted by x. Arranging the values of x in an ascending order, we get

52, 56, 68, 70, 75, 80, 82.

Therefore, Me = 70. Thus, Median profit = ₹ 70,000.

Table 14.2.2					
Computation of Mean deviation about median					
x _i x _i -Me					
52	18				
56	14				
68	2				
70	0				
75	5				
80	10				
82	12				
Total	61				

Thus mean deviation about median = $\frac{\sum |x_i - \text{Median}|}{n}$

= (₹)
$$\frac{61}{7}$$

= ₹ 8714.28

Coefficient of mean deviation = $\frac{\text{MD about median}}{\text{Median}} \times 100$ = $\frac{8714.28}{70000} \times 100$ = 12.45

Example 14.2.6 : Compute the mean deviation about the arithmetic mean for the following data:x :13579f :58921

Also find the coefficient of the mean deviation about the AM.

Solution: We are to apply formula (14.1.2) as these data refer to a grouped frequency distribution the AM is given by

$$\overline{\mathbf{x}} = \frac{\sum f_i \mathbf{x}_i}{N}$$

$$=\frac{5\times1+8\times3+9\times5+2\times7+1\times9}{5+8+9+2+1}=3.88$$

Table 14.2.3

Computation of MD about the AM

х	f	$ \mathbf{x} - \overline{\mathbf{x}} $	$f \mathbf{x}-\overline{\mathbf{x}} $
(1)	(2)	(3)	$(4) = (2) \times (3)$
1	5	2.88	14.40
3	8	0.88	7.04
5	9	1.12	10.08
7	2	3.12	6.24
9	1	5.12	5.12
Total	25	_	42.88

Thus, MD about AM is given by

$$\frac{\sum f |x - \overline{x}|}{N} = \frac{42.88}{25}$$

Coefficient of MD about its AM = $\frac{\text{MD about AM}}{\text{AM}} \times 100$ = $\frac{1.72}{2.88} \times 100$

© The Institute of Chartered Accountants of India

Example 14.2.7: Compute the coefficient of mean deviation about median for the following distribution:

Weight in kgs.	:	40-50	50-60	60-70	70-80
No. of persons	:	8	12	20	10

Solution: We need to compute the median weight in the first stage

Table 14.2.4

Computation of median weight

Weight in kg (CB)	No. of Persons (Cumulative Frequency)
40	0
50	8
60	20
70	40
80	50

Hence,

$$\mathbf{M} = l_1 + \left(\frac{\frac{\mathbf{N}}{2} - \mathbf{N}_l}{\mathbf{N}_u - \mathbf{N}_l}\right) \times \mathbf{C}$$

$$= \left[60 + \frac{25 - 20}{40 - 20} \times 10\right] \text{kg.} = 62.50 \text{kg}$$

Table 14.2.5

Computation of mean deviation of weight about median

weight (kgs.) (1)	mid-value (x _i) kgs. (2)	No. of persons (f _i) (3)	x _i -Me (kgs.) (4)	$f_i x_i - Me $ (kgs.) (5)=(3)×(4)
40-50	45	8	17.50	140
50-60	55	12	7.50	90
60–70	65	20	2.50	50
70-80	75	10	12.50	125
Total	_	50	-	405

Mean deviation about median = $\frac{\sum f_i |x_i - Median|}{N}$ $= \frac{405}{50} \text{kg.}$ = 8.10 kg.

Coefficient of mean deviation about median $=\frac{\text{Mean deviation about median}}{\text{Median}} \times 100$

$$= \frac{8.10}{62.50} \times 100$$

= 12.96

Example 14.2.8: If x and y are related as 4x+3y+11 = 0 and mean deviation of x is 5.40, what is the mean deviation of y?

Solution: Since 4x + 3y + 11 = 0

Therefore, $y = \left(\frac{-11}{3}\right) + \left(\frac{-4}{3}\right)x$

Hence MD of $y = |b| \times MD$ of x

$$= \frac{4}{3} \times 5.40$$
$$= 7.20$$

(14.2.4 STANDARD DEVIATION

Although mean deviation is an improvement over range so far as a measure of dispersion is concerned, mean deviation is difficult to compute and further more, it cannot be treated mathematically. The best measure of dispersion is, usually, standard deviation which does not possess the demerits of range and mean deviation.

Standard deviation for a given set of observations is defined as the root mean square deviation when the deviations are taken from the AM of the observations. If a variable x assumes n values $x_1, x_2, x_3, \dots, x_n$ then its standard deviation(s) is given by

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$$

.....(14.2.5)

For a grouped frequency distribution, the standard deviation is given by

$$s = \sqrt{\frac{\sum f_i (x_i - \bar{x})^2}{N}}$$
(14.2.6)

(14.2.5) and (14.2.6) can be simplified to the following forms

$$s = \sqrt{\frac{\sum x_i^2}{n} - \overline{x}^2}$$
 for unclassified data
= $\sqrt{\frac{\sum f_i x_i^2}{N} - \overline{x}^2}$ for a grouped frequency distribution.

Sometimes the square of standard deviation, known as variance, is regarded as a measure of dispersion. We have, then,

Variance =
$$s^2 = \frac{\sum (x_i - \overline{x})^2}{n}$$
 for unclassified data
= $\frac{\sum f_i (x_i - \overline{x})^2}{N}$ for a grouped frequency distribution(14.2.8)

A relative measure of dispersion using standard deviation is given by coefficient of variation (cv) which is defined as the ratio of standard deviation to the corresponding arithmetic mean, expressed as a percentage.

ILLUSTRATIONS:

Example 14.2.9: Find the standard deviation and the coefficient of variation for the following numbers: 5, 8, 9, 2, 6

Solution: We present the computation in the following table.

Table 14.2.6 Computation of standard deviation

x _i	X _i ²
5	25
8	64
9	81
2	4
6	36
30	$\sum x_{i}^{2} = 210$

Applying (14.2.7), we get the standard deviation as

$$s = \sqrt{\frac{\sum x_i^2}{n} - \overline{x}^2}$$

$$= \sqrt{\frac{210}{5} - \left(\frac{30}{5}\right)^2} \qquad \left(\sin \operatorname{ce} \overline{x} = \frac{\Sigma x_i}{n}\right)$$
$$= \sqrt{42 - 36}$$
$$= \sqrt{6}$$
$$= 2.45$$

The coefficient of variation is

$$CV = 100 \times \frac{SD}{AM}$$
$$= 100 \times \frac{2.45}{6}$$
$$= 40.83$$

Example 14.2.10: Show that for any two numbers a and b, standard deviation is given

by
$$\frac{|a-b|}{2}$$
.

Solution: For two numbers a and b, AM is given by $\overline{x} = \frac{a+b}{2}$

The variance is

$$s^{2} = \frac{\sum (x_{i} - \overline{x})^{2}}{2}$$
$$= \frac{\left(a - \frac{a + b}{2}\right)^{2} + \left(b - \frac{a + b}{2}\right)^{2}}{2}$$
$$= \frac{\left(a - b\right)^{2}}{4} + \frac{\left(a - b\right)^{2}}{4}$$
$$= \frac{\left(a - b\right)^{2}}{4}$$
$$\Rightarrow s = \frac{|a - b|}{2}$$

(The absolute sign is taken, as SD cannot be negative).

Example 14.2.11: Prove that for the first n natural numbers, SD is $\sqrt{\frac{n^2-1}{12}}$.

Solution: for the first n natural numbers AM is given by

$$\overline{\mathbf{x}} = \frac{1+2+3+\dots+n}{n}$$

$$= \frac{n(n+1)}{2n}$$

$$= \frac{n+1}{2}$$

$$\therefore SD = \sqrt{\frac{\sum x_i^2}{n} - \overline{\mathbf{x}}^2}$$

$$= \sqrt{\frac{1^2+2^2+3^2\dots+n^2}{n} - (\frac{n+1}{2})^2}$$

$$= \sqrt{\frac{n(n+1)(2n+1)}{6n} - \frac{(n+1)^2}{4}}$$

$$= \sqrt{\frac{(n+1)(4n+2-3n-3)}{12}} = \sqrt{\frac{n^2-1}{12}}$$
Thus, SD of first n natural numbers is SD = $\sqrt{\frac{n^2-1}{12}}$

We consider the following formula for computing standard deviation from grouped frequency distribution with a view to saving time and computational labour:

Example 14.2.12: Find the SD of the following distribution:

Weight (kgs.)	:	50-52	52-54	54-56	56-58	58-60
No. of Students	:	17	35	28	15	5

Computation of 5D							
Weight (kgs.) (1)	No. of Students (f _i) (2)	Mid-value (x _i) (3)	$d_i = x_i - 55$ 2 (4)	$f_i d_i$ (5)=(2)×(4)	$f_i d_i^2$ (6)=(5)×(4)		
50-52	17	51	-2	-34	68		
52-54	35	53	-1	-35	35		
54-56	28	55	0	0	0		
56-58	15	57	1	15	15		
 58-60	5	59	2	10	20		
Total	100	-	-	- 44	138		

Table 14.2.7 Computation of SD

Applying (14.2.7), we get the SD of weight as

$$= \sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2} \times C$$
$$= \sqrt{\frac{138}{100} - \frac{(-44)^2}{100}} \times 2kgs.$$

$$= \sqrt{1.38 - 0.1936} \times 2 \text{ kgs.}$$

= 2.18 kgs.

Properties of standard deviation

- I. If all the observations assumed by a variable are constant i.e. equal, then the SD is zero. This means that if all the values taken by a variable x is k, say, then s = 0. This result applies to range as well as mean deviation.
- II. SD remains unaffected due to a change of origin but is affected in the same ratio due to a change of scale i.e., if there are two variables x and y related as y = a+bx for any two constants a and b, then SD of y is given by

$$s_{y} = |b|s_{x}$$
(14.2.11)

III. If there are two groups containing n_1 and n_2 observations, \bar{x}_1 and \bar{x}_2 as respective AM's, s_1 and s_2 as respective SD's, then the combined SD is given by

Solution:

where,

$$d_2 = \overline{x}_2 - \overline{x}$$

 $d_1 = \overline{x}_1 - \overline{x}$

and

$$\overline{\mathbf{x}} = \frac{\mathbf{n}_1 \mathbf{x}_1 + \mathbf{n}_2 \mathbf{x}_2}{\mathbf{n}_1 + \mathbf{n}_2} = \text{combined AM}$$

This result can be extended to more than 2 groups. For $x \ge 2$ groups, we have

to

With

and

 $\overline{\mathbf{x}} = \frac{\sum n_i \overline{\mathbf{x}}_i}{\sum n_i}$

 $d_i = x_i - \overline{x}$

Where

$$\overline{x}_1 = \overline{x}_2$$
 (14.2.13) is reduced

$$s = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2}}$$

Example 14.2.13: If AM and coefficient of variation of x are 10 and 40 respectively, what is the variance of (15–2x)?

Solution: let y = 15 - 2x

This $cv_x = \frac{s_x}{x} \times 100$

$$\Rightarrow \qquad 40 = \frac{S_x}{10} \times 100$$

 \Rightarrow $S_x = 4$

From (1), $S_y = 2 \times 4 = 8$

Therefore, variance of $(15-2x) = S_v^2 = 64$

Example 14.2.14: Compute the SD of 9, 5, 8, 6, 2.

Without any more computation, obtain the SD of

Sample I	-1,	-5,	-2,	-4,	-8,
Sample II	90,	50,	80,	60,	20,
Sample III	23,	15,	21,	17,	9.

Solution:

Table 14.2.7Computation of SD

x _i	X_i^2
9	81
5	25
8	64
6	36
2	4
30	210

The SD of the original set of observations is given by

$$s = \sqrt{\frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2}$$
$$= \sqrt{\frac{210}{5} - \left(\frac{30}{5}\right)^2}$$
$$= \sqrt{42 - 36}$$
$$= \sqrt{6}$$
$$= 2.45$$

If we denote the original observations by x and the observations of sample I by y, then we have

$$y = -10 + x$$
$$y = (-10) + (1) x$$
$$\therefore S_y = |1| \times S_x$$
$$= 1 \times 2.45$$
$$= 2.45$$

In case of sample II, x and y are related as

$$Y = 10x$$
$$= 0 + (15)x$$

 $\therefore s_y = |10| \times s_x$ $= 10 \times 2.45$ = 24.50And lastly, y = (5) + (2)x $\Rightarrow s_y = 2 \times 2.45$ = 4.90

Example 14.2.15: For a group of 60 boy students, the mean and SD of stats. marks are 45 and 2 respectively. The same figures for a group of 40 girl students are 55 and 3 respectively. What is the mean and SD of marks if the two groups are pooled together?

Solution: As given $n_1 = 60$, $\bar{x}_1 = 45$, $s_1 = 2$, $n_2 = 40$, $\bar{x}_2 = 55$, $s_2 = 3$

Thus the combined mean is given by

$$\overline{\mathbf{x}} = \frac{\mathbf{n}_1 \overline{\mathbf{x}}_1 + \mathbf{n}_2 \overline{\mathbf{x}}_2}{\mathbf{n}_1 + \mathbf{n}_2}$$
$$= \frac{60 \times 45 + 40 \times 55}{60 + 40}$$
$$= 49$$
$$\mathbf{d}_1 = \overline{\mathbf{x}}_1 - \overline{\mathbf{x}} = 45 - 49 = -4$$

Thus

$$d_2 = \overline{x}_2 - \overline{x} = 55 - 49 = 6$$

Applying (14.2.13), we get the combined SD as

$$s = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}}$$
$$s = \sqrt{\frac{60 \times 2^2 + 40 \times 3^2 + 60 \times (-4)^2 + 40 \times 6^2}{60 + 40}}$$
$$= \sqrt{30}$$
$$= 5.48$$

Example 14.2.16: The mean and standard deviation of the salaries of the two factories are provided below :

Factory	No. of Employees	Mean Salary	SD of Salary
А	30	₹ 4800	₹10
В	20	₹ 5000	₹12

- i) Find the combined mean salary and standard deviation of salary.
- ii) Examine which factory has more consistent structure so far as satisfying its employees are concerned.

Solution: Here we are given

n₁ = 30,
$$\bar{x}_1 = ₹ 4800$$
, $s_1 = ₹ 10$,
n₂ = 20, $\bar{x}_2 = ₹ 5000$, $s_2 = ₹ 12$
i) $\frac{30 \times ₹ 4800 + 20 \times ₹ 5000}{30 + 20} = ₹ 4800$
d₁ = $\bar{x}_1 - \bar{x} = ₹ 4,800 - ₹ 4880 = -₹ 80$
d₂ = $\bar{x}_2 - \bar{x} = ₹ 5,000 - ₹ 4880 = ₹ 120$
hence, the combined SD in ruppes is given by

hence, the combined SD in rupees is given by

$$s = \sqrt{\frac{30 \times 10^2 + 20 \times 12^2 + 30 \times (-80)^2 + 20 \times 120^2}{30 + 20}}$$
$$= \sqrt{9717.60}$$
$$= 98.58$$

thus the combined mean salary and the combined standard deviation of salary are ₹ 4880 and ₹ 98.58 respectively.

ii) In order to find the more consistent structure, we compare the coefficients of variation of the

two factories. Letting
$$CV_A = \frac{100 \times \frac{S_A}{\overline{x}_A}}{\overline{x}_A}$$
 and $CV_B = \frac{100 \times \frac{S_B}{\overline{x}_B}}{\overline{x}_B}$

We would say factory A is more consistent

if $CV_A < CV_B$. Otherwise factory B would be more consistent.

Now
$$CV_A = 100 \times \frac{s_A}{\overline{x}_A} = 100 \times \frac{s_1}{\overline{x}_1} = \frac{100 \times 10}{4800} = 0.21$$

and
$$CV_{B} = 100 \times \frac{s_{B}}{\overline{x}_{B}} = 100 \times \frac{s_{2}}{\overline{x}_{2}} = \frac{100 \times 12}{5000} = 0.24$$

Thus we conclude that factory A has more consistent structure.

Example 14.2.17: A student computes the AM and SD for a set of 100 observations as 50 and 5 respectively. Later on, she discovers that she has made a mistake in taking one observation as 60 instead of 50. What would be the correct mean and SD if

- i) The wrong observation is left out?
- ii) The wrong observation is replaced by the correct observation?

Solution: As given, n = 100, $\bar{x} = 50$, S = 5

Wrong observation = 60(x), correct observation = 50(V)

$$\overline{\mathbf{x}} = \frac{\sum \mathbf{x}_i}{n}$$
$$\Rightarrow \quad \sum \mathbf{x}_i = \mathbf{n}\overline{\mathbf{x}} = 100 \times 50 = 5000$$

and
$$s^2 = \frac{\sum x_i^2}{n} - \overline{x}^2$$

 $\Rightarrow \sum x_i^2 = n(\overline{x}^2 + s^2) = 100(50^2 + 5^2) = 252500$

- i) Sum of the 99 observations = 5000 60 = 4940 AM after leaving the wrong observation = 4940/99 = 49.90 Sum of squares of the observation after leaving the wrong observation = 252500 - 60² = 248900 Variance of the 99 observations = 248900/99 - (49.90)² = 2514.14 - 2490.01 = 24.13 ∴ SD of 99 observations = 4.91
- ii) Sum of the 100 observations after replacing the wrong observation by the correct observation = 5000 60 + 50 = 4990

$$AM = \frac{4990}{100} = 49.90$$

Corrected sum of squares = $252500 + 50^2 - 60^2 = 251400$ Corrected SD = $\sqrt{\frac{251400}{100} - (49.90)^2}$ = $\sqrt{23.94} = 4.90$

(14.2.5 QUARTILE DEVIATION

Another measure of dispersion is provided by **quartile deviation** or **semi-inter–quartile** range which is given by

$$Q_{\rm d} = \frac{Q_3 - Q_1}{2}$$
(14.2.14)

A relative measure of dispersion using quartiles is given by coefficient of quartile deviation which is

Coefficient of quartile deviation = $\frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100$ (14.2.15)

Quartile deviation provides the best measure of dispersion for open-end classification. It is also less affected due to sampling fluctuations. Like other measures of dispersion, quartile deviation remains unaffected due to a change of origin but is affected in the same ratio due to change in scale.

Example 14.2.18 : Following are the marks of the 10 students : 56, 48, 65, 35, 42, 75, 82, 60, 55, 50. Find quartile deviation and also its coefficient.

Solution:

After arranging the marks in an ascending order of magnitude, we get 35, 42, 48, 50, 55, 56, 60, 65, 75, 82

third and the 2nd observation.

First quartile
$$(Q_1) = \frac{(n+1)}{4}$$
 th observation

$$= \frac{(10+1)}{4}$$
 th observation

$$= 2.75^{\text{th}} \text{ observation}$$

$$= 2^{\text{nd}} \text{ observation} + 0.75 \times \text{ difference between the}$$

$$= 42 + 0.75 \times (48 - 42)$$

$$= 46.50$$

Third quartile $(Q_3) = \frac{3(n+1)}{4}$ th observation

$$= 8.25^{\text{ th}} \text{ observation}$$

$$= 65 + 0.25 \times 10$$

= 67.50

Thus applying (14.2.14), we get the quartile deviation as

$$\frac{\mathbf{Q}_3 - \mathbf{Q}_1}{2} = \frac{67.50 - 46.50}{2} = 10.50$$

Also, using (14.2.15), the coefficient of quartile deviation

$$= \frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100$$
$$= \frac{67.50 - 46.50}{67.50 + 46.50} \times 100$$
$$= 18.42$$

Example 14.2.19 : If the quartile deviation of x is 6 and 3x + 6y = 20, what is the quartile deviation of y?

Solution: 3x + 6y = 20

$$\Rightarrow \quad y = \left(\frac{20}{6}\right) + \left(\frac{-3}{6}\right) x$$

Therefore, quartile deviation of $y = \frac{|-3|}{6} \times$ quartile deviation of x

$$=\frac{1}{2} \times 6$$
$$= 3.$$

Example 14.2.20: Find an appropriate measures of dispersion from the following data:

Daily wages (₹)	:	upto 20	20-40	40-60	60-80	80-100
No. of workers (₹)	:	5	11	14	7	3

Solution: Since this is an open-end classification, the appropriate measure of dispersion would be quartile deviation as quartile deviation does not taken into account the first twenty five percent and the last twenty five per cent of the observations.

Table 14.2.8Computation of Quartile						
Daily wages in (₹) (Class boundary)	No. of workers (less than cumulative frequency)					
а	0					
20	5					
40	16					
60	30					
80	37					
100	40					

Here a denotes the first Class Boundary

Q₁ = ₹
$$\left[20 + \frac{10 - 5}{16 - 5} \times 20 \right] = ₹ 29.09$$

Q₃ = ₹ 60

Thus quartile deviation of wages is given by

$$\frac{Q_3 - Q_1}{2}$$

= $\frac{₹ 60 - ₹ 29.09}{2}$
= ₹ 15.46

Example 14.2.21: The mean and variance of 5 observations are 4.80 and 6.16 respectively. If three of the observations are 2, 3 and 6, what are the remaining observations?

Solution: Let the remaining two observations be a and b, then as given

$$\frac{2+3+6+a+b}{5} = 4.80$$

$$\Rightarrow 11+a+b = 24$$

$$\Rightarrow a+b = 13 \dots(1)$$
and
$$\frac{2^2+a^2+b^2+3^2+6^2}{5} - (4.80)^2$$

$$\Rightarrow \frac{49+a^2+b^2}{5} - 23.04 = 6.16$$

$$\Rightarrow 49+a^2+b^2 = 146$$

$$\Rightarrow a^2+b^2 = 97 \dots(2)$$
From (1), we get $a = 13-b \dots(3)$
Eliminating a from (2) and (3), we get
$$(13-b)^2+b^2 = 97$$

$$\Rightarrow 169-26b+2b^2 = 97$$

$$\Rightarrow b^2-13b+36 = 0$$

$$\Rightarrow (b-4)(b-9) = 0$$

$$\Rightarrow b = 4 \text{ or } 9$$
From (3), $a = 9 \text{ or } 4$

Thus the remaining observations are 4 and 9.

Example 14.2.22: After shift of origin and change of scale, a frequency distribution of a continuous variable with equal class length takes the following form of the changed variable (d):

d	:	-2	-1	0	1	2
Frequency	:	17	35	28	15	5

If the mean and standard deviation of the original frequency distribution are 54.12 and 2.1784 respectively, find the original frequency distribution.

Solution: We need find out the origin A and scale C from the given conditions.

Since
$$d_i = \frac{x_i - A}{C}$$

 $\Rightarrow x_i = A + Cd_i$

Once A and C are known, the mid- values x_i 's would be known. Finally, we convert the mid-values to the corresponding class boundaries by using the formula:

C

$$LCB = x_i - C/2$$

and
$$UCB = x_i + C/2$$

On the basis of the given data, we find that

$$\sum f_i d_i = -44$$
, $\sum f_i d_i^2 = 138$ and N = 100

Hence s =
$$\sqrt{\frac{\sum f_i d_i^2}{N}} - \left(\frac{\sum f_i d_i}{N}\right)^2 \times 2.1784 = \sqrt{\frac{138}{100}} - \left(\frac{-44}{100}\right)^2 \times C$$

$$\Rightarrow 2.1784 = \sqrt{1.38 - 0.1936} \times C$$
$$\Rightarrow 2.1784 = 1.0892 \times C$$

$$\Rightarrow 2.1/84 = 1.0892 \times$$
$$\Rightarrow C = 2$$

 \Rightarrow

Further,
$$\overline{x} = A + \frac{\sum f_i d_i}{N} \times C$$

 $\Rightarrow 54.12 = A + \frac{-44}{100} \times 2$
 $\Rightarrow 54.12 = A - 0.88$
 $\Rightarrow A = 55$
Thus $x_i = A + Cd_i$
 $\Rightarrow x_i = 55 + 2d_i$

Table 14.2.9

Computation of the Original Frequency Distribution

		$\mathbf{x}_{i} =$	Class interval
d _i	f	$55 + 2d_{i}$	$x_i \pm \frac{C}{2}$
-2	17	51	50-52
-1	35	53	52-54
0	28	55	54-56
1	15	57	56-58
2	5	59	58-60

Example 14.2.23: Compute coefficient of variation from the following data:

Age	:	under 10	under 20	under 30	under 40	under 50	under 60
No. of persons							
Dying	:	10	18	30	45	60	80

Solution: What is given in this problem is less than cumulative frequency distribution. We need first convert it to a frequency distribution and then compute the coefficient of variation.

Computation of coefficient of variation								
Age in years class Interval	No. of persons dying (f _i)	Mid-value (x _i)	$\frac{d_i}{\frac{x_i - 25}{10}}$	f _i d _i	$f_i d_i^2$			
0-10	10	5	-2	-20	40			
10-20	18–10= 8	15	-1	-8	8			
20-30	30-18=12	25	0	0	0			
30-40	45-30=15	35	1	15	15			
40-50	60-45=15	45	2	30	60			
50-60	80-60=20	55	3	60	180			
Total	80	_	-	77	303			

Table 14.2.10

Computation of coefficient of variation

The AM is given by:

$$\bar{\mathbf{x}} = \mathbf{A} + \frac{\sum \mathbf{f}_i \mathbf{d}_i}{N} \times \mathbf{C}$$
$$= \left(25 + \frac{77}{80} \times 10\right) \text{ years}$$
$$= 34.63 \text{ years}$$

The standard deviation is

s =
$$\sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2} \times C$$

= $\sqrt{\frac{303}{80} - \left(\frac{77}{80}\right)^2} \times 10$ years

= $\sqrt{3.79 - 0.93} \times 10$ years = 16.91 years

Thus the coefficient of variation is given by

$$CV = \frac{S}{X} \times 100$$

= $\frac{16.91}{34.63} \times 100$
= 48.83

Example 14.2.24: You are given the distribution of wages in two factors A and B

Wages in ₹	:	100-200	200-300	300-400	400-500	500-600	600-700
No. of workers in A	:	8	12	17	10	2	1
No. of workers in B	:	6	18	25	12	2	2

State in which factory, the wages are more variable.

Solution:

As explained in example 14.2.3, we need compare the coefficient of variation of A(i.e. v_A) and of B (i.e v_B).

If $v_A > v_B$, then the wages of factory A would be more variable. Otherwise, the wages of factory B would be more variable where

$$V_{A} = 100 \times \frac{s_{A}}{\overline{x}_{A}}$$
 and $V_{B} = 100 \times \frac{s_{B}}{\overline{x}_{B}}$

Table 14.2.11

Computation of coefficient of variation of wages of Two Factories A and B

Wages in rupees (1)	Mid-value x (2)	d= (3)	No. of workers of A f _A (4)	No. of workers of B f _B (5)	$f_{A}d$ (6)=(3)×(4)	$f_A d^2$ (7)=(3)×(6)	$f_{B}d$ (8)=(3)×(5)	$f_{B}d^{2}$ (9)=(3)×(8)
100-200	150	-2	8	6	-16	32	-12	24
200-300	250	-1	12	18	-12	12	-18	18
300-400	350	0	17	25	0	0	0	0
400-500	450	1	10	12	10	10	12	12
500-600	550	2	2	2	4	8	4	8
600-700	650	3	1	2	3	9	6	18
Total	_	_	50	65	-11	71	- 8	80

For Factory A

$$\overline{\mathbf{x}}_{A} = \mathbf{\overline{\xi}} \left(350 + \frac{-11}{50} \times 100 \right) = \mathbf{\overline{\xi}} 328$$
$$\mathbf{S}_{A} = \mathbf{\overline{\xi}} \sqrt{\frac{71}{50} - \left(\frac{-11}{50}\right)^{2}} \times 100 = \mathrm{Nu}.117.12$$
$$\therefore \mathbf{V}_{A} = \frac{\mathbf{S}_{A}}{\overline{\mathbf{x}}_{A}} \times 100 = 35.71$$

For Factory B

$$\overline{\mathbf{x}}_{\mathrm{B}} = \overline{\mathbf{x}} \left(350 + \frac{-8}{65} \times 100 \right) = \overline{\mathbf{x}} 337.69$$

S_B = ₹
$$\sqrt{\frac{80}{65} - \left(\frac{-8}{65}\right)^2} \times 100$$

= ₹ 110.25

$$\therefore V_{\rm B} = \frac{110.25}{337.69} \times 100 = 32.65$$

As $V_A > V_B$, the wages for factory A is more variable.

SUMMARY

- All these merits of standard deviation make SD as the most widely and commonly used measure of dispersion.
- Range is the quickest to compute and as such, has its application in statistical quality control. However, range is based on only two observations and affected too much by the presence of extreme observation(s).
- Mean deviation is rigidly defined, based on all the observations and not much affected by sampling fluctuations. However, mean deviation is difficult to comprehend and its computation is also time consuming and laborious. Furthermore, unlike SD, mean deviation does not possess mathematical properties.
- Quartile deviation is also rigidly defined, easy to compute and not much affected by sampling fluctuations. The presence of extreme observations has no impact on quartile deviation since quartile deviation is based on the central fifty-percent of the observations. However, quartile deviation is not based on all the observations and it has no desirable mathematical properties. Nevertheless, quartile deviation is the best measure of dispersion for open-end classifications.

(b) Relative measures of dispersion

(b) Absolute measures of dispersion

EXERCISE — UNIT-II

Set A

Write down the correct answers. Each question carries one mark.

- 1. Which of the following statements is correct?
 - (a) Two distributions may have identical measures of central tendency and dispersion.
 - (b) Two distributions may have the identical measures of central tendency but different measures of dispersion.
 - (c) Two distributions may have the different measures of central tendency but identical measures of dispersion.
 - (d) All the statements (a), (b) and (c).
- 2. Dispersion measures
 - (a) The scatterness of a set of observations
 - (b) The concentration of a set of observations
 - (c) Both (a) and (b)
 - (d) Neither (a) and (b).
- 3. When it comes to comparing two or more distributions we consider
 - (a) Absolute measures of dispersion
 - (c) Both (a) and (b) (d) Either (a) or (b).
- 4. Which one is easier to compute?
 - (a) Relative measures of dispersion
 - (c) Both (a) and (b) (d) Range
- 5. Which one is an absolute measure of dispersion?
 - (a) Range (b) Mean Deviation
 - (c) Standard Deviation (d) All these measures
- 6. Which measure of dispersion is most usefull?
 - (a) Standard deviation (b) Quartile deviation
 - (c) Mean deviation (d) Range
- 7. Which measures of dispersions is not affected by the presence of extreme observations?
 - (a) Range (b) Mean deviation
 - (c) Standard deviation (d) Quartile deviation
- 8. Which measure of dispersion is based on the absolute deviations only?
 - (a) Standard deviation (b) Mean deviation
 - (c) Quartile deviation (d) Range

9.	Which measure is base	d on only the central fi	fty percent of the obse	ervations?
	(a) Standard deviation	n	(b) Quartile deviation	on
	(c) Mean deviation		(d) All these measur	res
10). Which measure of disp	ersion is based on all t	he observations?	
	(a) Mean deviation		(b) Standard deviati	on
	(c) Quartile deviation		(d) (a) and (b) but n	ot (c)
11	1. The appropriate measu	re of dispersion for op	en-end classification i	S
	(a) Standard deviation	n	(b) Mean deviation	
	(c) Quartile deviation		(d) All these measur	res.
12	2. The most commonly us	sed m <mark>easure of dispers</mark>	ion is	
	(a) Range		(b) Standard deviati	ion
	(c) Coefficient of varia	ation	(d) Quartile deviation	on.
13	3. Which measure of disp	ersion has some desira	able mathematical pro	perties?
	(a) Standard deviation	n	(b) Mean deviation	
	(c) Quartile deviation		(d) All these measure	res
14	4. If the profits of a com- deviation of profits for			nths, then the standard
	(a) Positive	(b) Negative	(c) Zero	(d) (a) or (c)
15	5. Which measure of disp combining several grou		r finding a pooled mea	asure of dispersion after
	(a) Mean deviation		(b) Standard deviati	on
	(c) Quartile deviation		(d) Any of these	
16	6. A shift of origin has no	impact on		
	(a) Range		(b) Mean deviation	
	(c) Standard deviation		(d) All these and qu	artile deviation.
17	7. The range of 15, 12, 10,	9, 17, 20 is		
	(a) 5	(b) 12	(c) 13	(d) 11.
18	8. The standard deviatior	n of 10, 16, 10, 16, 10, 10), 16, 16 is	
	(a) 4	(b) 6	(c) 3	(d) 0.
19	9. For any two numbers S	D is always		
	(a) Twice the range		(b) Half of the range	2
	(c) Square of the rang	e	(d) None of these.	

- 20. If all the observations are increased by 10, then
 - (a) SD would be increased by 10
 - (b) Mean deviation would be increased by 10
 - (c) Quartile deviation would be increased by 10
 - (d) All these three remain unchanged.
- 21. If all the observations are multiplied by 2, then
 - (a) New SD would be also multiplied by 2
 - (b) New SD would be half of the previous SD
 - (c) New SD would be increased by 2
 - (d) New SD would be decreased by 2.

Set B

Write down the correct answers. Each question carries two marks.

1.	What is the coefficient of range for the following wages of 8 workers?						
	₹ 80, ₹ 65, ₹ 90, ₹ 60, ₹ 75, ₹ 70, ₹ 72, ₹ 85.						
	(a) ₹ 30	(b)	₹ 20	(c) 30		(d) 20	
2.	If R_x and R_y denowing what would be t				x and y are	related by 3x+2y	+10=0,
	(a) $R_x = R_y$	(b)	$2 R_x = 3 R_y$	(c) $3 R_x =$	= 2 R _y	(d) $R_x = 2 R_y$	
3.	What is the coeff	ficient of ran	ge for the foll	lowing distrib	oution?		
	Class Interval :	10-19	<mark>20-29</mark>	30-39	40-49	50-59	
	Frequency:	11	25	16	7	3	
	(a) 22	(b) 5	50	(c) 72.46)	(d) 75.82	
4.	If the range of x	is 2, what we	ould be the ra	inge of –3x +5	0?		
	(a) 2	(b) 6)	(c) – 6		(d) 44	
5.	What is the value	e of mean de	eviation abou	t mean for the	e following	numbers?	
	5, 8, 6, 3, 4.						
	(a) 5.20	(b)	7.20	(c) 1.44		(d) 2.23	
6.	What is the value	e of mean de	eviation abou	t mean for the	efollowing	observations?	
	50, 60, 50, 50, 60,						
	(a) 5	(b) 7	7	(c) 35		(d) 10	
7.	The coefficient o	f mean devi	ation about m	ean for the fir	rst 9 natural	l numbers is	
	(a) 200/9	(b) 8	80	(c) 400/	9	(d) 50.	

8.	If the relation between x and y is $5y-3x = 10$ and the mean deviation about mean for x is 12, then the mean deviation of y about mean is						
	(a) 7.20	(b) 6.80	(c) 20	(d) 18.80.			
9.	If two variables x and y mean of x are 1 and 0.3 mean is						
	(a) –5	(b) 12	(c) 50	(d) 4.			
10.	The mean deviation abo (a) 1/6	out mode for the numb (b) 1/11	ers 4/11, 6/11, 8/11, 9 (c) 6/11	9/11, 12/11, 8/11 is (d) 5/11.			
11.	What is the standard de	eviation of 5, 5, 9, 9, 9, 1	.0, 5, 10, 10?				
	(a) $\sqrt{14}$	(b) $\frac{\sqrt{42}}{3}$	(c) 4.50	(d) 8			
12.	If the mean and SD of x	are a and b respectivel	by, then the SD of $\frac{x-a}{b}$	a - is			
	(a) –1	(b) 1	(c) ab	(d) a/b.			
13.	What is the coefficient of variation of the following numbers?						
	53, 52, 61, 60, 64. (a) 8.09	(b) 18.08	(c) 20.23	(d) 20.45			
14.	If the SD of x is 3, what (a) 36	us the variance of (5–2: (b) 6	x)? (c) 1	(d) 9			
15.	If x and y are related by	2x+3y+4 = 0 and SD o	f x is 6, then SD of y is	5			
	(a) 22	(b) 4	(c) $\sqrt{5}$	(d) 9.			
16.	The quartiles of a varial	ble are 45, 52 and 65 res	spectively. Its quartile	e deviation is			
	(a) 10	(b) 20	(c) 25	(d) 8.30.			
17.	If x and y are related as deviation of y is	3x+4y = 20 and the quantum of the second states $3x+4y = 20$ and the quantum of the second states $3x+4y = 20$ and $3x+4y = 20$ and $3x+4y = 20$ and $3x+4y = 20$ and $3x+4y = 20$	uartile deviation of x	is 12, then the quartile			
	(a) 16	(b) 14	(c) 10	(d) 9.			
18.	If the SD of the 1st n nat	tural numbers is 2, ther	n the value of n must	be			
	(a) 2	(b) 7	(c) 6	(d) 5.			
19.	If x and y are related by respectively, then the co	5		n to be 5 and 10			
	(a) 25	(b) 30	(c) 40	(d) 20.			

20.	The mean and SI) for a	b and 2 a	are 3 an	$\frac{2}{\sqrt{2}}$	- respec	rtively. T	he valu	e of ab	wouldl	he
_0.		5 101 u,		iie o uii	√3		, (1 V C1 y) 1	iic vuit		, oura	
. .	(a) 5		(b) 6			(c) 11			(d) 3.		
Set		_	- 1								
Write down the correct answer. Each question carries 5 marks.											
1.	What is the mean						U U				
	Variable:	5 3	10 4		15 6	20 5)	25 3	30 2		
	Frequency: (a) 6.00	3	4 (b) 5.93		0	5 (c) 6.()7	3	(d) 7.20	ו	
2.	What is the mean	n dovia			an foi			ata?	(a) 7.2	<i>.</i>	
۷.	X: 3	5	7			9	11	atas	13	15	
	F: 2	8	9			9 16	11		7	4	
	(a) 2.50	0	(b) 2.46		-	(c) 2.4			(d) 2.32		
3.	What is the coef deviation from A				on fo			distribı			s? Take
	Height in inches:	:	60-62			63-65			66-68	69-71	72-74
	No. of students:		5			22			28	17	3
	(a) 2.30 inches		(b) 3.45	inches		(c) 3.8	32 inches		(d) 2.48	3 inches	
4.	The mean deviat	ion of	weights a	bout m	ediar	n for the	followin	g data:			
	Weight (lb) : 1	1 <mark>31-14</mark> 0	141-1	150	151-1	.60	161-170	17	71-180	181-	190
	No. of persons : Is given by	3	8		1	3	15		6	5	5
	(a) 10.97		(b) 8.23			(c) 9.6	53		(d) 11.4	45.	
5.	What is the stand 200 persons?	dard d	eviation f	from th	e foll	owing c	lata relat	ing to t	the age	distribu	ation of
	Age (year) :	20	30		40		50	60	1	70	80
	No. of people:	13	28		31		46	39		23	20
	(a) 15.29		(b) 16.87	7		(c) 18	.00		(d) 17.5	52	
6.	What is the coeff	icient o	of variatio	on for t	he fol	lowing	distribut	ion of v	vages?		
	Daily Wages (₹):	30	- 40	40 – 50		50 – 60	60 – 2	70 70) - 80	80 – 9	0
	No. of workers		17	28		21	15		13	6	
	(a) ₹ 14.73		(b) 14.73			(c) 26	.93	((d) 20.8	2	
7	Which of the fol	lowing			nd B	. ,					mont of

7. Which of the following companies A and B is more consistent so far as the payment of dividend is concerned ?

	Dividend	paid l	oy A :	5	9	6]	12	15	10	8	10
	Dividend	paid	by B :	4	8	7	1	15	18	9	6	6
	(a) A			(b) B			(c) Bot	h (a) and	d (b)	(d) Neith	er (a) 1	nor (b)
8.	The mean observatio comprising	ns ha	ave me	an and S								
	(a) 16			(b) 25			(c) 4			(d) 2		
9.	If two san respective										is 16 a	ind 25
	(a) 5.00			(b) 5.0)6		(c) 5.23	3		(d) 5.35		
10.	The mean by a CA str value of SI	udent	who to									
	(a) 4.90			(b) 5.0	00		(c) 4.88	3		(d) 4.85.		
11.	The value wages	of a	ppropr	iate mea	sure of	dispers	sion for	the fol	lowing	g distribut	ion of	daily
	Wages (₹):	:	Be	low 30	30 - 39	40	-49	50-59	6	50-79	Abov	e 80
	No. of wor	rkers		5	7	1	18	32		28	10)
	is given by	7										
	(a) ₹ 11.03			(b) ₹ 1	0.50		(c) 11.6	68		(d) ₹ 11.68	3.	
UN	IIT-II: AN	SWI	ERS									
Se	t A											
1.	(d)	2.	(a)	3.	(b)	4.	(d)	5.	(d)	6.	(a)	
7.	(d)	8.	(b)	9.	(b)	10.	(d)	11.	(c)	12.	(b)	
13	. (a)	14.	(c)	15.	(b)	16.	(d)	17.	(d)	18.	(c)	
19	. (b)	20.	(d)	21.	(a)							
Se	t B											
	(d)	2.	(c)	3.	(c)	4.	(b)	5.	(c)	6.	(a)	
7.	(c)	8.	(a)	9.	(b)	10.	• •	11.	(b)	12.	(b)	
13		14.	(a)	15.	(b)	16.	(a)	17.	(d)	18.	(b)	
19		20.	(a)									
	t C											
	(c)	2.	(d)	3.	(b)	4.		5.	(b)	6.	(c)	
7.	(a)	8.	(c)	9.	(b)	10.	(b)	11.	(a)			

MEASURES OF CENTRAL TENDENCY AND DISPERSION

ADDITIONAL QUESTION BANK

1.	The number of measures of central tendency is						
	(a) two	(b) three	(c) four	(d) five			
2.	The words "mean" or "average" only refer to						
	(a) A.M	(b) G.M	(c) H.M	(d) none			
3.	——————————————————————————————————————	ost stable of all the me	asures of central tendenc	ry.			
	(a) G.M	(b) H.M	(c) A.M	(d) none.			
4.	Mean is of ——— ty	pes.					
	(a) 3	(b) 4	(c) 8	(d) 5			
5.	Weighted A.M is relate	ed to					
	(a) G.M	(b) frequency	(c) H.M	(d) none.			
6.	Frequencies are also ca	lled weights.					
	(a) True	(b) false	(c) both	(d) none			
7.	The algebraic sum of d	eviations of observati	ons from their A.M is				
	(a) 2	(b) - 1	(c) 1	(d) 0			
8.	G.M of a set of n observ	vations is the ———	 root of their product. 				
	(a) n/2 th	(b) (n+1)th	(c) nth	(d) (n -1)th			
9.	The algebraic sum of d	eviations of 8, 1, 6 fro	m the A.M viz.5 is				
	(a) -1	(b) 0	(c) 1	(d) none			
10.	G.M of 8, 4,2 is						
	(a) 4	(b) 2	(c) 8	(d) none			
11.	is the 1	reciprocal of the A.M	of reciprocal of observati	ons.			
	(a) H.M	(b) G.M	(c) both	(d) none			
12.	A.M is never less than	G.M					
	(a) True	(b) false	(c) both	(d) none			
13.	G.M is less than H.M						
	(a) true	(b) false	(c) both	(d) none			
14.	The value of the middle	emost item when the	y are arranged in order of	f magnitude is called			
	(a) standard deviation	(b) mean	(c) mode	(d) median			
15.	Median is unaffected b	y extreme values.					
	(a) true	(b) false	(c) both	(d) none			

16.	Median of 2, 5, 8, 4, 9, 6	6,71 is						
	(a) 9	(b) 8	(c) 5	(d) 6				
17.	The value which occurs with the maximum frequency is called							
	(a) median	(b) mode	(c) mean	(d) none				
18.	In the formula Mode = $L_1 + (d_1 X c) / (d_1 + d_2)$							
	d_1 is the difference of fi	requencies in the mod	dal class & the ———	— class.				
	(a) preceding	(b) following	(c) both	(d) none				
19.	In the formula Mode =	$L_1 + (d_1 X c) / (d_1 + d_2)$	2)					
	d_2 is the difference of fi	requencies in the mod	dal class & the ———	class.				
	(a) preceding	(b) succeeding	(c) both	(d) none				
20.	In formula of median f	or grouped frequency	v distribution N is					
	(a) total frequency (c) frequency		(b) frequency density (d) cumulative frequen	су				
21.	When all observations	occur with equal freq	luency ——— does i	not exit.				
	(a) median	(b) mode	(c) mean	(d) none				
22.	Mode of the observation	ons 2, 5, 8, 4, 3, 4, 4, 5,	2, 4, 4 is					
	(a) 3	(b) 2	(c) 5	(d) 4				
23.	For the observations 5,	3, 6, 3, 5, 10, 7, 2 there	e are ——— mode	es.				
	(a) 2	(b) 3	(c) 4	(d) 5				
24.	———— of a set observations.	of observations is de	efined to be their sum,	divided by the no. of				
	(a) H.M	(b) G.M	(c) A.M	(d) none				
25.	Simple average is some	etimes called						
	(a) weighted average(c) relative average		(b) unweighted average (d) none	e				
26.	When a frequency dist	ribution is given, the	frequencies themselves t	reated as weights.				
	(a) True	(b) false	(c) both	(d) none				
27.	Each value is considered	ed only once for						
	(a) simple average(c) both		(b) weighted average (d) none					
28.	Each value is considered	ed as many times as it	t occurs for					
	(a) simple average(c) both		(b) weighted average (d) none					

29.	29. Multiplying the values of the variable by the corresponding weights and th sum of products by the sum of weights is					
	(a) simple average (c) both		(b) weighted average (d) none			
30.	Simple & weighted ave	erage are equal only w	when all the weights are e	qual.		
	(a) True	(b) false	(c) both	(d) none		
31.	The word "average " u	sed in "simple averag	ge" and "weighted averag	ge" generally refers to		
	(a) median	(b) mode	(c) A.M , G.M or H.M	(d) none		
32.	——— average is ob	tained on dividing th	e total of a set of observa	tions by their number		
	(a) simple	(b) weighted	(c) both	(d) none		
33.	Frequencies are genera	lly used as				
	(a) range	(b) weights	(c) mean	(d) none		
34.	The total of a set of obset the	ne product of their numbe	er of observations and			
	(a) A.M	(b) G.M	(c) H.M	(d) none		
35.	The total of the deviation	ons of a set of observa	ations from their A.M is a	lways		
	(a) 0	(b) 1	(c) -1	(d) none		
36.	Deviation may be posit	tive or negative or zer	0			
	(a) true	(b) false	(c) both	(d) none		
37.	87. The sum of the squares of deviations of a set of observations has the smallest value, w the deviations are taken from their					
	(a) A.M	(b) H.M	(c) G.M	(d) none		
38.	For a given set of posit	ive observations H.M	is less than G.M			
	(a) true	(b) false	(c) both	(d) none		
39.	For a given set of posit	ive observations A.M	is greater than G.M			
	(a) true	(b) false	(c) both	(d) none		
40.	Calculation of G.M is n	nore difficult than				
	(a) A.M	(b) H.M	(c) median	(d) none		
41.	——— has a limite	ed use				
	(a) A.M	(b) G.M	(c) H.M	(d) none		
42.	A.M of 8, 1, 6 is					
	(a) 5	(b) 6	(c) 4	(d) none		

43.	. ———— can be calculated from a frequency distribution with open end intervals							
	(a) Median	(b) Mean	(c) Mode	(d) none				
44.	The values of all items are taken into consideration in the calculation of							
	(a) median	(b) mean	(c) mode	(d) none				
45.	The values of extreme	items do not influence	the average in case of					
	(a) median	(b) mean	(c) mode	(d) none				
46.	In a distribution with a concentration of the di	derate skewness to the r	ight, it is closer to the					
	(a) mean	(b) median	(c) both	(d) none				
47.	If the variables $x \& z$ as then $\overline{z} = a \overline{x} + b$	re so related that $z = a$	$ax + b$ for each $x = x_i$ when	re a & b are constants,				
	(a) true	(b) false	(c) both	(d) none				
48.	G.M is defined only w	hen						
	(a) all observations ha	ave the same sign and	l none is zero					
	(b) all observations have the different sign and none is zero							
	(c) all observations have the same sign and one is zero							
	(d) all observations ha	ave the different sign	and one is zero					
49.	——— is useful in av	veraging ratios, rates	and percentages.					
	(a) A.M	(b) G.M	(c) H.M	(d) none				
50.	G.M is useful in constr		er.					
	(a) true	(b) false	(c) both	(d) none				
51.	More laborious numer	ical calculations invol	ves in G.M than A.M					
	(a) True	(b) false	(c) both	(d) none				
52.	H.M is defined when r							
	(a) 3	(b) 2	(c) 1	(d) 0				
53.	When all values occur							
	(a) mode	(b) mean	(c) median	(d) none				
54.		0						
	(a) mode	(b) mean	(c) median	(d) none				
55.	For the calculation of - distribution.	———— , the data	must be arranged in the	e form of a frequency				
	(a) median	(b) mode	(c) mean	(d) none				

56.	56. ————————————————————————————————————							
	(a)	mode	(b) mean	(c) median	(d) none			
57.		is the value of the variable corresponding to the highest frequency						
	(a)	mode	(b) mean	(c) median	(d) none			
58.	The	class in which mod	le belongs is known a	s				
	(a)	median class	(b) mean class	(c) modal class	(d) none			
59.	The	formula of mode is	applicable if classes a	are of ——— width.				
	(a)	equal	(b) unequal	(c) both	(d) none			
60.	For	calculation of ——	- we have to construe	ct cumulative frequency	distribution			
	(a)	mode	(b) median	(c) mean	(d) none			
61.	For	calculation of ——	— we have to construe	ct a grouped frequency d	listribution			
	(a)	median	(b) mode	(c) mean	(d) none			
62.	Rela	ation between mean	, median & mode is					
	(a) (c)	mean - mode = $2(1)$ mean - median = 2	/	(b) mean - median = 3 (mean - mode) (d) mean - mode = 3 (mean - median)				
63.	Wh	en the distribution i	s symmetrical, mean,	median and mode				
	(a)	coincide	(b) do not coincide	(c) both	(d) none			
64.	Mea	an, median & mode	are equal for the					
	(a) (c)	Binomial distributi both	ion	(b) Normal distribution (d) none				
65.				n observed that the three approximate relation, pro				
	(a)	very skew	(b) not very skew	(c) both	(d) none			
66.		divides t	he total number of ob	servations into two equa	l parts.			
	(a)	mode	(b) mean	(c) median	(d) none			
67.		asures which are use collectively known	-	n the observations into a	fixed number of parts			
	(a)	partition values	(b) quartiles	(c) both	(d) none			
68.	The	middle most value	of a set of observation	ns is				
	(a)	median	(b) mode	(c) mean	(d) none			
69.	The	number of observa	tions smaller than —-	—— is the same as the nu	umber larger than it.			
	(a)	median	(b) mode	(c) mean	(d) none			

———— is the value of	f the variable corresp	onding to cumulative free	quency N /2
(a) mode	(b) mean	(c) median	(d) none
——— divide	the total no. observat	tions into 4 equal parts.	
(a) median	(b) deciles	(c) quartiles	(d) percentiles
——— quartil	e is known as Upper	quartile	
(a) First	(b) Second	(c) Third	(d) none
Lower quartile is			
(a) first quartile	(b) second quartile	(c) upper quartile	(d) none
		ver quartile is the same as	the no. lying between
(a) true	(b) false	(c) both	(d) none
——— are used for n	neasuring central ten	dency, dispersion & skew	ness.
(a) Median	(b) Deciles	(c) Percentiles	(d) Quartiles.
The second quartile is a	known as		
(a) median	(b) lower quartile	(c) upper quartile	(d) none
The lower & upper qua	rtiles are used to defi	ne	
(a) standard deviation(c) both	1	(b) quartile deviation (d) none	
Three quartiles are used	d in		
(a) Pearson's formula (c) both		(b) Bowley's formula (d) none	
Less than First quartile	, the frequency is equ	al to	
(a) N /4	(b) 3N /4	(c) N /2	(d) none
Between first & second	quartile, the frequent	cy is equal to	
(a) 3N/4	(b) N /2	(c) N /4	(d) none
Between second & upp	er quartile, the freque	ency is equal to	
(a) 3N/4	(b) N /4	(c) N /2	(d) none
Above upper quartile,	the frequency is equa	l to	
(a) N /4	(b) N /2	(c) 3N /4	(d) none
Corresponding to first	quartile, the cumulati	ve frequency is	
(a) N /2	(b) N / 4	(c) 3N /4	(d) none
	 (a) mode divide (a) median quartile (a) First Lower quartile is (a) first quartile The number of observations of the number of the number of observations of the number of the	(a) mode(b) mean———— divide the total no. observation(a) median(b) deciles———— quartile is known as Upper(a) First(b) SecondLower quartile is(b) Second quartile(a) first quartile(b) second quartileThe number of observations smaller than low lower and middle quartile.(a) true(b) false———— are used for measuring central tend(a) Median(b) DecilesThe second quartile is known as(a) median(b) lower quartileThe lower & upper quartiles are used to defi(a) standard deviation (c) bothThree quartiles are used in(a) Pearson's formula (c) bothLess than First quartile, the frequency is equation(a) $N/4$ (b) $N/2$ Between first & second quartile, the frequency(a) $3N/4$ (b) $N/4$ Above upper quartile, the frequency is equation(a) $3N/4$ (b) $N/2$ Between second & upper quartile, the frequency(a) $3N/4$ (b) $N/4$ Above upper quartile, the frequency is equation(a) $3N/4$ (b) $N/4$ Above upper quartile, the frequency is equation(a) $N/4$ (b) $N/2$ Between first & second quartile, the frequency(a) $3N/4$ (b) $N/2$ Between second & upper quartile, the frequency is equation(a) $3N/4$ (b) $N/2$ Corresponding to first quartile, the cumulation	

84.	. Corresponding to second quartile, the cumulative frequency is				
	(a) N/4	(b) 2 N/4	(c) 3N/4	(d) none	
85.	5. Corresponding to upper quartile, the cumulative frequency is				
	(a) 3N/4	(b) N/4	(c) 2N/4	(d) none	
86.	The values which divid	de the total number o	f observations into 10 equ	al parts are	
	(a) quartiles	(b) percentiles	(c) deciles	(d) none	
87.	There are ————————————————————————————————	leciles.			
	(a) 7	(b) 8	(c) 9	(d) 10	
88.	Corresponding to first	decile, the cumulativ	e frequency is		
	(a) N/10	(b) 2N/10	(c) 9N/10	(d) none	
89.	Fifth decile is equal to				
	(a) mode	(b) median	(c) mean	(d) none	
90.	The values which divid	de the total number of	f observations into 100 ec	ual parts is	
	(a) percentiles	(b) quartiles	(c) deciles	(d) none	
91.	Corresponding to seco	nd decile, the cumula	tive frequency is		
	(a) N/10	(b) 2N/10	(c) 5N/10	(d) none	
92.	There are —— per	centiles.			
	(a) 100	(b) 98	(c) 97	(d) 99	
93.	10 th percentile is equal	to			
	(a) 1 st decile	(b) 10 th decile	(c) 9 th decile	(d) none	
94.	50 th percentile is known	n as			
	(a) 50 th decile	(b) 50 th quartile	(c) mode	(d) median	
95.	20 th percentile is equal	to			
	(a) 19 th decile	(b) 20 th decile	(c) 2 nd decile	(d) none	
96.	$(3^{rd} quartile - 1^{st} quartile - 1^{st} quartile - 1^{st} quartile - 1^{st} quarter quar$	artile)/2 is			
	(a) skewness	(b) median	(c) quartile deviation	(d) none	
97.	1 st percentile is less that	n 2 nd percentile.			
	(a) true	(b) false	(c) both	(d) none	
98.	25 th percentile is equal	to			
	(a) 1 st quartile	(b) 25 th quartile	(c) 24 th quartile	(d) none	
99.	90 th percentile is equal	to			
	(a) 9 th quartile	(b) 90 th decile	(c) 9 th decile	(d) none	

100. 1 st decile is greater than 2 nd decile					
(a) True	(b) false	(c) both	(d) none		
101. Quartile deviation is a	measure of dispersio	n.			
(a) true	(b) false	(c) both	(d) none		
102. To define quartile dev	iation we use				
(a) lower & middle qu (c) upper & middle qu		(b) lower & upper quar (d) none	tiles		
103. Calculation of quartile	s, deciles ,percentiles	may be obtained graphic	ally from		
(a) Frequency Polygon	(b) Histogram	(c) Ogive	(d) none		
104. 7 th decile is the absciss	a of that point on the	Ogive whose ordinate is			
(a) 7N/10	(b) 8N /10	(c) 6N /10	(d) none		
105. Rank of median is					
(a) $(n+1)/2$	(b) (n+ 1)/4	(c) $3(n+1)/4$	(d) none		
106. Rank of 1^{st} quartile is					
(a) $(n+1)/2$	(b) (n+ 1)/4	(c) $3(n+1)/4$	(d) none		
107. Rank of 3rd quartile is					
(a) $3(n+1)/4$	(b) (n+ 1)/4	(c) $(n + 1)/2$	(d) none		
108. Rank of k th decile is					
(a) $(n+1)/2$	(b) (n+ 1)/4	(c) $(n + 1)/10$	(d) k(n +1)/10		
109. Rank of k th percentile	e is				
(a) $(n+1)/100$	(b) k(n+ 1)/10	(c) $k(n + 1)/100$	(d) none		
110. ———— is equal t frequency distribution		g to cumulative frequency	(N+1)/2 from simple		
(a) Median	(b) 1 st quartile	(c) 3 rd quartile	(d) 4^{th} quartile		
111. ——— is equal to the frequency distribution		to cumulative frequency	(N+1)/4 from simple		
(a) Median	(b) 1 st quartile	(c) 3 rd quartile	(d) 1 st decile		
112. ——— is equal to t simple frequency distr		ng to cumulative freque	ncy 3 (N + 1)/4 from		
(a) Median	(b) 1 st quartile	(c) 3 rd quartile	(d) 1 st decile		
113. ——— is equal to th simple frequency distr	1	ng to cumulative frequer	acy k (N + 1)/10 from		
(a) Median	(b) k th decile	(c) k^{th} percentile	(d) none		

114.	114. ——— is equal to the value corresponding to cumulative frequency k(N + 1)/100 from simple frequency distribution				
	(a) k th decile	(b) k^{th} percentile	(c) both	(d) none	
115.	For grouped frequency cumulative frequency N		——— is equal to the va	lue corresponding to	
	(a) median	(b) 1 st quartile	(c) 3 rd quartile	(d) none	
116.	For grouped frequency cumulative frequency N		——— is equal to the va	lue corresponding to	
	(a) median	(b) 1 st quartile	(c) 3 rd quartile	(d) none	
117.	For grouped frequency cumulative frequency 3		——— is equal to the va	lue corresponding to	
	(a) median	(b) 1 st quartile	(c) 3 rd quartile	(d) none	
118.	For grouped frequency cumulative frequency k		——— is equal to the va	lue corresponding to	
	(a) median	(b) kth percentile	(c) kth decile	(d) none	
119.	For grouped frequency cumulative frequency k		——— is equal to the va	lue corresponding to	
	(a) k th quartile	(b) k^{th} percentile	(c) k th decile	(d) none	
120.	In Ogive, abscissa corre	esponding to ordinate	N/2 is		
	(a) median	(b) 1 st quartile	(c) 3 rd quartile	(d) none	
121.	In Ogive, abscissa corre	esponding to ordinate	N/4 is		
	(a) median	(b) 1 st quartile	(c) 3 rd quartile	(d) none	
122.	In Ogive, abscissa corre	esponding to ordinate	3N/4 is		
	(a) median	(b) 3 rd quartile	(c) 1 st quartile	(d) none	
123.	In Ogive, abscissa corre	esponding to ordinate	is kth deci	ile.	
	(a) kN/10	(b) kN/100	(c) kN/50	(d) none	
124.	In Ogive , abscissa corre	esponding to ordinate	e ———— is kth per	centile.	
	(a) kN/10	(b) kN/100	(c) kN/50	(d) none	
125.	For 899, 999, 391, 384, 59 Rank of median is	90, 480, 485, 760, 111,	240		
	(a) 2.75	(b) 5.5	(c) 8.25	(d) none	

(c) 2

126. For 333, 999, 888, 777, 666, 555, 444 Rank of 1st quartile is (a) 3 (b) 1

(d) 7

127.	127. For 333, 999, 888, 777, 1000, 321, 133 Rank of 3 rd quartile is				
	(a) 7	(b) 4	(c) 5		(d) 6
128.	Price per kg.(₹) : 45 50	35; Kgs.Purchased : 1	00 40 60 Total fr	equency	is
	(a) 300	(b) 100	(c) 150		(d) 200
129.	The length of a rod is m by averaging these 10 c	y 1	imes. You are to	o estimat	e the length of the rod
	What is the suitable for	rm of average in this c	ase?		
	(a) A.M	(b) G.M	(c) H.M		(d) none
130.	A person purchases 5 a average no. of eggs per average in this case?				
	(a) A.M	(b) G.M	(c) H.M		(d) none
131.	You are given the pop population of India at assuming a constant ra	the middle of the p	eriod by averag		
	What is the suitable for	rm of average in this c	ase?		
	(a) A.M	(b) G.M	(c) H.M		(d) none
132.	——————————————————————————————————————	ffected by sampling fl	uctions.		
	(a) Standard deviation (c) both		(b) Quartile de (d) none	viation	
133.	"Root –Mean Square D	eviation from Mean"	is		
	(a) Standard deviation		(b) Quartile de	viation	
	(c) both		(d) none		
134.	Standard Deviation is				
	(a) absolute measure	(b) relative measure	(c) both		(d) none
135.	Coefficient of variation	is			
	(a) absolute measure	(b) relative measure	(c) both		(d) none
136.	deviation	n is called semi-interq	uartile range.		
	(a) Percentile	(b) Standard	(c) Quart	tile	(d) none
137.	———— Dev	iation is defined as h	alf the difference	ce betwee	en the lower & upper
	quartiles.		/ \ 1 .1		(1)
	(a) Quartile	(b) Standard	(c) both		(d) none

138. Quartile Deviation for the data 1, 3, 4, 5, 6, 6, 10 is					
	(a) 3	(b) 1	(c) 6	(d) 1.5	
139.	Coefficient of Quartile	Deviation is			
	(a) (Quartile Deviation(c) (Quartile Deviation		(b) (Quartile Deviation > (d) none	x 100)/Mean	
140.	Mean for the data 6, 4,	1, 6, 5, 10, 3 is			
	(a) 7	(b) 5	(c) 6	(d) none	
141.	Coefficient of variation	= (Standard Deviatio	n x 100)/Mean		
	(a) true	(b) false	(c) both	(d) none	
142.	If mean = 5, Standard d	leviation = 2.6 then th	e coefficient of variation	is	
	(a) 49	(b) 51	(c) 50	(d) 52	
143.	If median = 5, Quartile	deviation = 1.5 then t	the coefficient of quartile	deviation is	
	(a) 33	(b) 35	(c) 30	(d) 20	
144.	A.M of 2, 6, 4, 1, 8, 5, 2	is			
	(a) 4	(b) 3	(c) 4	(d) none	
145.	Most useful among all	measures of dispersio	n is		
	(a) S.D	(b) Q.D	(c) Mean deviation	(d) none	
146.	For the observations 6,	4, 1, 6, 5, 10, 4, 8 Rang	e is		
	(a) 10	(b) 9	(c) 8	(d) none	
147.	A measure of central te	ndency tries to estima	ate the		
	(a) central value	(b) lower value	(c) upper value	(d) none	
148.	Measures of central ten	dency are known as			
	(a) differences	(b) averages	(c) both	(d) none	
149.	Mean is influenced by e	extreme values.			
	(a) true	(b) false	(c) both	(d) none	
150.	Mean of 6, 7, 11, 8 is				
	(a) 11	(b) 6	(c) 7	(d) 8	
151.	The sum of differences	between the actual va	lues and the arithmetic r	nean is	
	(a) 2	(b) -1	(c) 0	(d) 1	
152.	When the algebraic surfigure of arithmetic me		the arithmetic mean is r ect.	not equal to zero, the	
	(a) is	(b) is not	(c) both	(d) none	

14.72

153. In the problem							
No. of shirts:	30–32	33–35	36–38	39–41	42–44		
No. of persons:	15	14	42	27	18		
The assumed mean	is						
(a) 34	(b) 37		(c) 40	(0	d) 43		
154. In the problem							
Size of items:	1–3	3–8	8–15	15–26			
Frequency:	5	10	16	15			
The assumed mean	is						
(a) 20.5	(b) 2		(c) 11.5	(0	d) 5.5		
155. The average of a ser of item within a ser			ges, each of whic	h is based o	on a certain number		
(a) moving average (c) simple average			(b) weighted a (d) none	verage			
156. ——— average	es is used for si	moothenin	g a time series.				
(a) moving average (c) simple average	(a) moving average (c) simple average			(b) weighted average (d) none			
157. Pooled Mean is also	o called						
(a) Mean	(b) Geometric	Mean	(c) Grouped M	ean (o	d) none		
158. Half of the numbers have values greater			lues less than th	e ———	——— and half will		
(a) mean, median	(b)media	n, median	(c) mode, mean	n (a	d) none.		
159. The median of 27, 3	80, 26, 44, 42, 52	l, 37 is					
(a) 30	(b) 42		(c) 44	(0	d) 37		
160. For an even numbe	r of values the	median is	the				
(a) average of two i (c) both	niddle values		(b) middle valu (d) none	le			
161. In the case of a conti class interval in wh	1	2	tion, the size of t	he ———	item indicates		
(a) $(n-1)/2^{th}$	(b) (n+1)	$/2^{th}$	(c) n/2 th	(0	d) none		
162. The deviations from median are ———————————————————————————————————					nored as compared		

(a) minimum (b) maximum (c) same (d) none

to other measures of central tendency.

163. Ninth Decile lies in the class interval of the item (a) n/9(b) 9n/10(c) 9n/20(d) none item. 164. Ninety Ninth Percentile lies in the class interval of the item (c) 99n/200(b) 99n/10(a) 99n/100(d) none item. 165. ——— is the value of the variable at which the concentration of observation is the densest. (b) median (c) mode (d) none (a) mean 166. Height in cms: 60-62 63-65 66–68 69-71 72-74 No. of students: 15 118 142 127 18 Modal group is (a) 66–68 (b) 69–71 (c) 63–65 (d) none 167. A distribution is said to be symmetrical when the frequency rises & falls from the highest value in the — ------ proportion. (b) equal (c) both (a) unequal (d) none 168. — always lies in between the arithmetic mean & mode. (b) H.M (a) G.M (c) Median (d) none (a) weighted mean (b) simple mean (c) both (d) none 170. ———— is not much affected by fluctuations of sampling. (a) A.M (b) G.M (c) H.M (d) none 171. The data 1, 2, 4, 8, 16 are in (a) Arithmetic progression (b) Geometric progression (c) Harmonic progression (d) none 172. ———— & ———— can not be calculated if any observation is zero. (a) G.M & A.M (b) H.M & A.M (c) H.M & G. M (d) None. 173. _____ & _____ —— are called ratio averages. (a) H.M & G.M (b) H. M & A.M (c) A.M & G.M (d) none (a) A.M (b) G.M (c) H.M (d) none (a) median (b) modal (d) none (c) mean (b) mode (c) median (d) none (a) mean

177. 50% of actual values will be below & 50% of will be above ————					
(a) mode	(b) median	(c) mean	(d) none		
178. Extreme values ha	ave ——— effect on r	node.			
(a) high	(b) low	(c) no	(d) none		
179. Extreme values ha	ave ——— effect on r	median.			
(a) high	(b) low	(c) no	(d) none		
180. Extreme values ha	ave ——— effect on A	A.M.			
(a) greatest	(b) least	(c) some	(d) none		
181. Extreme values ha	ave ——— effect on I	H.M.			
(a) least	(b) greatest	(c) medium	(d) none		
182. ——— is u	sed when representation	on value is required & distril	oution is asymmetric.		
(a) mode	(b) mean	(c) median	(d) none		
183. ————————————————————————————————————	sed when most frequen	tly occurring value is require	ed (discrete variables).		
(a) mode	(b) mean	(c) median	(d) none		
184. ——— is u	sed when rate of growt	h or decline required.			
(a) mode	(b) A.M	(c) G.M	(d) none		
185. In finding ———	—, the distribution has	open-end classes.			
(a) median	(b) mean	(c) standard deviation	(d) none		
186. The cumulative fr	equency distribution is	s used for			
(a) median	(b) mode	(c) mean	(d) none		
187. In ——— the quar	ntities are in ratios.				
(a) A.M	(b) G.M	(c) H.M	(d) none		
188. ———————————————————————————————————	d when variability has	also to be calculated.			
(a) A.M	(b) G.M	(c) H.M	(d) none		
189. ————————————————————————————————————	d when the sum of abso	olute deviations from the av	erage should be least.		
(a) Mean	(b) Mode	(c) Median	(d) None		
190. ————————————————————————————————————	d when sampling varia	bility should be least.			
(a) Mode	(b) Median	(c) Mean	(d) none		
191. ———————————————————————————————————	d when distribution pa	ttern has to be studied at var	rying levels.		
(a) A.M	(b) Median	(c) G.M	(d) none		

14.74

MEASURES OF CENTRAL TENDENCY AND DISPERSION

192	. The average discovers				
	(a) uniformity in varia (c) both	bility	(b) variability in unifor (d) none	(b) variability in uniformity of distribution (d) none	
193	. The average has releva	ance for			
	(a) homogeneous popu (c) both	lation	(b) heterogeneous popu (d) none	llation	
194	. The correction factor is	s applied in			
	(a) inclusive type of di (c) both	stribution	(b) exclusive type of dis (d) none	stribution	
195	. "Mean has the least sa	mpling variability" pi	rove the mathematical pr	operty of mean	
	(a) True	(b) false	(c) both	(d) none	
196	. "The sum of deviation	s from the mean is zer	ro" —— is the mathemat	ical property of mean	
	(a) True	(b) false	(c) both	(d) none	
197	". "The mean of the two	samples can be combi	ned" — is the mathemati	cal property of mean	
	(a) True	(b) false	(c) both	(d) none	
198	8. "Choices of assumed property of mean	mean does not affect	t the actual mean"— pro	ove the mathematical	
	(a) True	(b) false	(c) both	(d) none	
199	. "In a moderately asym median & mode"— is		lean can be found out fro perty of mean	m the given values of	
	(a) True	(b) false	(c) both	(d) none	
200). The mean wages of t companies are equally		ual. It signifies that the	workers of both the	
	(a) True	(b) false	(c) both	(d) none	
201	. The mean wage in fac factory A pays more to		ereas in factory B it is ₹ actory B.	5,500. It signifies that	
	(a) True	(b) false	(c) both	(d) none	
202	. Mean of 0, 3, 5, 6, 7, 9,	12, 0, 2 is			
	(a) 4.9	(b) 5.7	(c) 5.6	(d) none	
203	. Median of 15, 12, 6, 13	, 12, 15, 8, 9 is			
	(a) 13	(b) 8	(c) 12	(d) 9	
204	. Median of 0.3, 5, 6, 7, 9	9, 12, 0, 2 is			
	(a) 7	(b) 6	(c) 3	(d) 5	

205	. Mode of 0, 3, 5, 6, 7, 9,	12, 0, 2 is		
	(a) 6	(b) 0	(c) 3	(d) 5
206	. Mode of 15, 12, 5, 13, 1	2, 15, 8, 8, 9, 9, 10, 15 i	s	
	(a)15	(b) 12	(c) 8	(d) 9
207	. Median of 40, 50, 30, 20	0, 25, 35, 30, 30, 20, 30	is	
	(a) 25	(b) 30	(c) 35	(d) none
208	. Mode of 40, 50, 30, 20,	25, 35, 30, 30, 20, 30 is		
	(a) 25	(b) 30	(c) 35	(d) none
209	. ——— in partic	ular helps in finding o	out the variability of the c	lata.
	(a) Dispersion	(b) Median	(c) Mode	(d) None
210	. Measures of central ter	ndency are called aver	rages of the ——order.	
	(a) 1 st	(b) 2 nd	(c) 3 rd	(d) none
211	. Measures of dispersior	n are called averages o	of the ——order.	
	(a) 1 st	(b) 2 nd	(c) 3 rd	(d) none
212	. In measuring dispersic	on, it is necessary to kr	now the amount of ———	— & the degree of —
	(a) variation, variation (c) median, variation		(b) variation, median (d) none	
213	. The amount of variatio	on is designated as —	——— measure of di	spersion.
	(a) relative	(b) absolute	(c) both	(d) none
214	. The degree of variatior	n is designated as ——	——— measure of dis	persion.
	(a) relative	(b) absolute	(c) both	(d) none
215			r more series with varyin n, only ——— mea	
	(a) absolute	(b) relative	(c) both	(d) none
216	. The relation Relative ra	ange = Absolute range	e/Sum of the two extrem	es. is
	(a) True	(b) false	(c) both	(d) none
217	. The relation Absolute	range = Relative range	e/Sum of the two extrem	es is
	(a) True	(b) false	(c) both	(d) none
218	. In quality control ——	—— is used as a subs	titute for standard deviat	ion.
	(a) mean deviation	(b) median	(c) range	(d) none
219	. ——— factor he	elps to know the value	e of standard deviation.	
	(a) Correction	(b) Range	(c) both	(d) none

14.76

220.	0. ————————————————————————————————————							
	(a) Range	(b) Mean		(c)]	Median		(d) Mode	
221.	As the sample size incr	eases, ———	—— a	lso t	ends to in	crease.		
	(a) Range	(b) Mean		(c)]	Median		(d) Mode	
222.	As the sample size incr	eases, range also	o tend	ls to	increase t	hough not	proportion	ately.
	(a) true	(b) false		(c) l	both		(d) none.	
223.	As the sample size incr	eases, range also	o tend	ls to				
	(a) decrease	(b) increase		(c) s	same		(d) none	
224.	The dependence of ran	ge on extreme it	ems c	an b	e avoided	by adopti	ng	
	(a) standard deviation	(b) mean devia	tion	(c) o	quartile d	eviation	(d) none	
225.	Quartile deviation is ca	lled						
	(a) semi inter quartile r	ange (b) quartil	e rang	ge (o) both		(d) none	
226.	When 1^{st} quartile = 20,	$3^{\rm rd}$ quartile = 30,	, the v	alue	of quartil	le deviatio	n is	
	(a) 7	(b) 4		(c) ·	-5		(d) 5	
227.	$(Q_3 - Q_1)/(Q_3 + Q_1)$ is							
	(a) coefficient of Quarti(c) coefficient of Standa				coefficien none	t of Mean	Deviation	
228.	Standard deviation is d (a) σ^2	lenoted by (b) σ	(c) 、	$\sqrt{\sigma}$			(d) none	
229.	The square of standard	deviation is know	own a	S				
	(a) variance (c) mean deviation				standard none	deviation		
230.	Mean of 25, 32, 43, 53, 6	52, 59, 48, 31, 24,	33 is					
	(a) 44	(b) 43		(c) 4	42		(d) 41	
231.	For the following frequ	ency distributio	n					
	Class interval:	10–20	20–3	30	30-40	40-50	50–60	60–70
	Frequency: assumed mean can be t	20 aken as	9		31	18	10	9
	(a) 55	(b) 45		(c) (35		(d) none	
232.	The value of the standa	rd deviation do	es not	t dep	end upon	the choic	e of the orig	;in.
	(a) True	(b) false		(c) l	both		(d) none	
233.	Coefficient of standard	deviation is						
	(a) S.D/Median	(b) S.D/Mean		(c) \$	S.D/Mod	e	(d) none	

234. The value of the st	andard deviation will ch	ange if any one of the	e observations is changed.
(a). True	(b) false	(c) both	(d) none
235. When all the value	es are equal then variance	e & standard deviatio	n would be
(a) 2	(b) -1	(c) 1	(d) 0
236. For values lie close	e to the mean, the standa	rd deviations are	
(a) big	(b) small	(c) moderate	(d) none
237. If the same amou deviation shall	nt is added to or subtra	cted from all the va	lues, variance & standard
(a) changed	(b) unchanged	(c) both	(d) none
238. If the same amoun decrease by the —		d from all the values,	the mean shall increase or
(a) big	(b) small	(c) same	(d) none
239. If all the values are be multiple of the	1 5	quantity, the ———	& also would
(a) mean, standard (c) mean, mode	l deviation	(b) mean , median (d) median , devia	tions
240. For a moderately n	on-symmetrical distribut	ion, Mean deviation =	= 4/5 of standard deviation
(a) true	(b) false	(c) both	(d) none
241. For a moderately n	on-symmetrical distribut	ion, Quartile deviatio	n = Standard deviation/3
(a) true	(b) false	(c) both	(d) none
242. For a moderately Standard deviation		oution, probable erro	r of standard deviation =
(a) true	(b) false	(c) both	(d) none
243. Quartile deviation	= Probable error of Stand	dard deviation.	
(a) true	(b) false	(c) both	(d) none
244. Coefficient of Mea	n Deviation is		
(a) Mean deviation	x 100/Mean or mode	(b) Standard deviat	ion x 100/Mean or median
(c) Mean deviation	n x 100/Mean or median	(d) none	
245. Coefficient of Qua	rtile Deviation = Quartile	e Deviation x 100/Me	edian
(a) true	(b) false	(c) both	(d) none
246. Karl Pearson's mea	asure gives		
(a) coefficient of M (c) coefficient of va		(b) coefficient of St (d) none	andard deviation

MEASURES OF CENTRAL TENDENCY AND DISPERSION

247. In ——— range has th	ne greatest use.						
(a) Time series	(b) quality control	(c) both	(d) none				
248. Mean is an absolute measure & standard deviation is based upon it. Therefore standard deviation is a relative measure.							
(a) true	(b) false	(c) both	(d) none				
249. Semi-quartile range is one-fourth of the range in a normal symmetrical distribution.							
(a) Yes	(b) No	(c) both	(d) none				
250. Whole frequency table	250. Whole frequency table is needed for the calculation of						
(a) range	(b) variance	(c) both	(d) none				
251. Relative measures of a	dispersion make devia	tions in similar units con	nparable.				
(a) true	(b) false	(c) both	(d) none				
252. Quartile deviation is h	pased on the						
(a) highest 50% (c) highest 25%		(b) lowest 25% (d) middle 50% of the i	tem.				
253. S.D is less than Mean	253. S.D is less than Mean deviation						
(a) true	(b) false	(c) both	(d) none				
254. Coefficient of variation is independent of the unit of measurement.							
(a) true	(b) false	(c) both	(d) none				
255. Coefficient of variation is a relative measure of							
(a) mean	(b) deviation	(c) range	(d) dispersion.				
256. Coefficient of variatio	n is equal to						
(a) Standard deviation (c) Standard deviation		(b) Standard deviation x 100 / mode (d) none					
257. Coefficient of Quartile	e Deviation is equal to						
	(a) Quartile deviation x 100 / median (c) Quartile deviation x 100 / mode		(b) Quartile deviation x 100 / mean (d) none				
258. If each item is reduced	d by 15 A.M is						
(a) reduced by 15	(b) increased by 15	(c) reduced by 10	(d) none				
259. If each item is reduced	d by 10, the range is						
(a) increased by 10	(b) decreased by 10	(c) unchanged	(d) none				
260. If each item is reduced	d by 20, the standard d	eviation					
(a) increased	(b) decreased	(c) unchanged	(d) none				

261. If the variables a	re increased or decrea	sed by the same amount t	the standard deviation is			
(a) decreased	(b) increased	(c) unchanged	(d) none			
262. If the variables are increased or decreased by the same proportion, the standard deviation changes by						
(a) same proport	ion (b) different pr	roportion (c) both	(d) none			
263. The mean of the	1 st n natural no. is					
(a) n/2	(b) (n-1)/2	(c) (n+1)/2	(d) none			
264. If the class interv	al is open-end then it	is difficult to find				
(a) frequency	(b) A.M	(c) both	(d) none			
265. Which one is true	e—					
(a) A.M = assum	(a) $A.M = assumed mean + arithmetic mean of deviations of terms$					
(b) G.M = assum	ed mean + arithmetic	mean of deviations of ter	ms			
(c) Both		(d) none				
266. If the A.M of any	distribution be 25 & or	ne term is 18. Then the dev	iation of 18 from A.M is			
(a) 7	(b) -7	(c) 43	(d) none			
267. For finding A.M	267. For finding A.M in Step-deviation method, the class intervals should be of					
(a) equal lengths	(b) unequal ler	ngths (c) maximum leng	ths (d) none			
268. The sum of the s A.M	quares of the deviation	ns of the variable is ——	when taken about			
(a) maximum	(b) zero	(c) minimum	(d) none			
269. The A.M of 1, 3, 5, 6, x, 10 is 6 . The value of x is						
(a) 10	(b) 11	(c) 12	(d) none			
270. The G.M of 2 & 8	3 is					
(a) 2	(b) 4	(c) 8	(d) none			
271. (n+1)/2 th term	is median if n is					
(a) odd	(b) even	(c) both	(d) none			
272. For the values of	a variable 5, 2, 8, 3, 7,	4, the median is				
(a) 4	(b) 4.5	(c) 5	(d) none			
273. The abscissa of the	ne maximum frequenc	cy in the frequency curve	is the			
(a) mean	(b) median	(c) mode	(d) none			
274. Variable:	2 3	4 5	6 7			
No. of men: Mode is	5 6	8 13	7 4			
(a) 6	(b) 4	(c) 5	(d) none			

275. The class having maximum frequency is called							
(a) modal class	(b) median class	(c) mean class	(d) none				
276. For determination of mode, the class intervals should be							
(a) overlapping	(b) maximum	(c) minimum	(d) none				
277. First Quartile lies in the class interval of the							
(a) $n/2^{th}$ item	(b) $n/4^{th}$ item	(c) $3n/4^{th}$ item	(d) $n/10^{th}$ item				
278. The value of a variate	278. The value of a variate that occur most often is called						
(a) median	(b) mean	(c) mode	(d) none				
279. For the values of a va	riable 3, 1, 5, 2, 6, 8, 4	he median is					
(a) 3	(b) 5	(c) 4	(d) none				
280. If $y = 5 x - 20 \& \overline{x} = 3$	0 then the value of \overline{y} :	is					
(a) 130	(b) 140	(c) 30	(d) none				
281. If $y = 3 x - 100$ and \overline{x}	281. If $y = 3 x - 100$ and $\overline{x} = 50$ then the value of \overline{y} is						
(a) 60	(b) 30	(c) 100	(d) 50				
282. The median of the numbers 11, 10, 12, 13, 9 is							
(a) 12.5	(b) 12	(c) 10.5	(d) 11				
283. The mode of the numbers 7, 7, 7, 9, 10, 11, 11, 11, 12 is							
(a) 11	(b) 12	(c) 7	(d) 7 & 11				
284. In a symmetrical distribution when the 3 rd quartile plus 1 st quartile is halved, the value would give							
(a) mean	(b) mode	(c) median	(d) none				
285. In Zoology ———	— is used.						
(a) median	(b) mean	(c) mode	(d) none				
286. For calculation of Spe	ed & Velocity						
(a) G.M	(b) A.M	(c) H.M	(d) none is used.				
287. The S.D is always tak	287. The S.D is always taken from						
(a) median	(b) mode	(c) mean	(d) none				
288. Coefficient of Standar	rd deviation is equal to)					
(a) S.D/A.M	(b) A.M/S.D	(c) S.D/GM	(d) none				
289. The distribution, for	which the coefficient o	f variation is less, is ——	— consistent.				
(a) less	(b) more	(c) moderate	(d) none				

ANSWERS

1.	(b)	2.	(a)	3.	(c)	4.	(a)	5.	(b)
6.	(a)	7.	(d)	8.	(c)	9.	(b)	10.	(a)
11.	(a)	12.	(a)	13.	(b)	14.	(d)	15.	(a)
16.	(d)	17.	(b)	18.	(a)	19.	(b)	20.	(a)
21.	(b)	22.	(d)	23.	(a)	24.	(c)	25.	(b)
26.	(a)	27.	(a)	28.	(b)	29.	(b)	30.	(a)
31.	(c)	32.	(a)	33.	(b)	34.	(a)	35.	(a)
36.	(a)	37.	(a)	38.	(a)	39.	(a)	40.	(a)
41.	(c)	42.	(a)	43.	(a)	44.	(b)	45.	(a)
46.	(b)	47.	(a)	48.	(a)	49.	(b)	50.	(a)
51.	(a)	52.	(d)	53.	(a)	54.	(a)	55.	(b)
56.	(c)	57.	(a)	58.	(c)	59.	(c)	60.	(b)
61.	(b)	62.	(d)	63.	(a)	64.	(b)	65.	(b)
66.	(c)	67.	(a)	68.	(a)	69.	(a)	70.	(c)
71.	(c)	72.	(c)	73.	(a)	74.	(a)	75.	(d)
76.	(a)	77.	(b)	78.	(b)	79.	(a)	80.	(c)
81.	(b)	82.	(a)	83.	(b)	84.	(b)	85.	(a)
86.	(c)	87.	(c)	88.	(a)	89.	(b)	90.	(a)
91.	(b)	92.	(d)	93.	(a)	94.	(d)	95.	(c)
96.	(c)	97.	(a)	98.	(a)	99.	(c)	100.	(b)
101.	(a)	102.	(b)	103.	(c)	104.	(a)	105.	(a)
106.	(b)	107.	(a)	108.	(d)	109.	(c)	110.	(a)
111.	(b)	112.	(c)	113.	(b)	114.	(b)	115.	(a)
116.	(b)	117.	(c)	118.	(c)	119.	(b)	120.	(a)
121.	(b)	122.	(b)	123.	(a)	124.	(b)	125.	(b)
126.		127.		128.		129.		130.	
131.		132.		133.		134.		135.	
136.		137.		138.		139.		140.	
141.		142.		143.		144.		145.	
146.		147.		148.		149.		150.	
151.	(c)	152.	(b)	153.	(b)	154.	(c)	155.	(a)

Г

14.82

156. (a)	157. (c)	158. (b)	159. (d)	160. (a)
161. (c)	162. (a)	163. (b)	164. (a)	165. (c)
166. (a)	167. (b)	168. (c)	169. (a)	170. (b)
171. (b)	172. (c)	173. (c)	174. (c)	175. (b)
176. (c)	177. (b)	178. (d)	179. (c)	180. (c)
181. (b)	182. (b)	183. (b)	184. (c)	185. (a)
186. (a)	187. (b)	188. (a)	189. (c)	190. (c)
191. (b)	192. (a)	193. (b)	194. (b)	195. (b)
196. (a)	197. (a)	198. (a)	199. (b)	200. (b)
201. (b)	202. (a)	203. (c)	204. (d)	205. (b)
206. (a)	207. (b)	208. (b)	209. (a)	210. (a)
211. (b)	212. (a)	213. (b)	214. (a)	215. (b)
216. (a)	217. (b)	218. (c)	219. (a)	220. (a)
221. (a)	222. (a)	223. (b)	224. (c)	225. (a)
226. (d)	227. (a)	228. (b)	229. (a)	230. (d)
231. (c)	232. (a)	233. (b)	234. (a)	235. (d)
236. (b)	237. (b)	238. (c)	239. (a)	240. (b)
241. (b)	242. (b)	243. (a)	244. (c)	245. (a)
246. (c)	247. (b)	248. (b)	249. (a)	250. (c)
251. (a)	252. (d)	253. (b)	254. (a)	255. (d)
256. (c)	257. (a)	258. (a)	259. (c)	260. (c)
261. (c)	262. (a)	263. (c)	264. (a)	265. (a)
266. (b)	267. (a)	268. (c)	269. (b)	270. (b)
271. (a)	272. (b)	273. (c)	274. (c)	275. (a)
276. (a)	277. (b)	278. (c)	279. (c)	280. (a)
281. (d)	282. (d)	283. (d)	284. (c)	285. (c)
286. (c)	287. (c)	288. (a)	289. (b)	